Identification of Small Molecules That Protect Pancreatic β Cells against Endoplasmic Reticulum Stress-Induced Cell Death
نویسندگان
چکیده
Endoplasmic reticulum (ER) stress plays an important role in the decline in pancreatic β cell function and mass observed in type 2 diabetes. Here, we developed a novel β cell-based high-throughput screening assay to identify small molecules that protect β cells against ER stress-induced cell death. Mouse βTC6 cells were treated with the ER stressor tunicamycin to induce ER stress, and cell death was measured as a reduction in cellular ATP. A collection of 17600 compounds was screened for molecules that promote β cell survival. Of the approximately 80 positive hits, two selected compounds were able to increase the survival of human primary β cells and rodent β cell lines subjected to ER stressors including palmitate, a free fatty acid of pathological relevance to diabetes. These compounds also restored ER stress-impaired glucose-stimulated insulin secretion responses. We show that the compounds promote β cell survival by reducing the expression of key genes of the unfolded protein response and apoptosis, thus alleviating ER stress. Identification of small molecules that prevent ER stress-induced β cell dysfunction and death may provide a new modality for the treatment of diabetes.
منابع مشابه
HDLs Protect Pancreatic β-Cells Against ER Stress by Restoring Protein Folding and Trafficking
Endoplasmic reticulum (ER) homeostasis alteration contributes to pancreatic β-cell dysfunction and death and favors the development of diabetes. In this study, we demonstrate that HDLs protect β-cells against ER stress induced by thapsigargin, cyclopiazonic acid, palmitate, insulin overexpression, and high glucose concentrations. ER stress marker induction and ER morphology disruption mediated ...
متن کاملInhibition of Calcium Influx Reduces Dysfunction and Apoptosis in Lipotoxic Pancreatic β-Cells via Regulation of Endoplasmic Reticulum Stress
Lipotoxicity plays an important role in pancreatic β-cell failure during the development of type 2 diabetes. Prolonged exposure of β-cells to elevated free fatty acids level could cause deterioration of β-cell function and induce cell apoptosis. Therefore, inhibition of fatty acids-induced β-cell dysfunction and apoptosis might provide benefit for the therapy of type 2 diabetes. The present stu...
متن کاملPPARδ Activation Rescues Pancreatic β-Cell Line INS-1E from Palmitate-Induced Endoplasmic Reticulum Stress through Enhanced Fatty Acid Oxidation
One of the key factors responsible for the development of type 2 diabetes is the loss of functional pancreatic β cells. This occurs due to a chronic exposure to a high fatty acid environment. ER stress is caused by an accumulation of irreversible misfold or unfold protein: these trigger the death of functional pancreatic β cells. PPARδ is an orphan nuclear receptor. It plays a pivotal role in r...
متن کاملNifedipine Protects INS-1 β-Cell from High Glucose-Induced ER Stress and Apoptosis
Sustained high concentration of glucose has been verified toxic to β-cells. Glucose augments Ca(2+)-stimulated insulin release in pancreatic β-cells, but chronic high concentration of glucose could induce a sustained level of Ca(2+) in β-cells, which leads to cell apoptosis. However, the mechanism of high glucose-induced β-cell apoptosis remains unclear. In this study, we use a calcium channel ...
متن کاملGlucagon-Like Peptide-1 Agonists Protect Pancreatic β-Cells From Lipotoxic Endoplasmic Reticulum Stress Through Upregulation of BiP and JunB
OBJECTIVE Chronic exposure of pancreatic beta-cells to saturated free fatty acids (FFAs) causes endoplasmic reticulum (ER) stress and apoptosis and may contribute to beta-cell loss in type 2 diabetes. Here, we evaluated the molecular mechanisms involved in the protection of beta-cells from lipotoxic ER stress by glucagon-like peptide (GLP)-1 agonists utilized in the treatment of type 2 diabetes...
متن کامل